What quantum computers can change and how different services aim to safeguard your data as a result

Quantum computers, which are very particular kinds of computers, are capable of solving problems in a very short amount of time, even those that would take a supercomputer a very long time to solve. It is true that doing these tasks is still a long way from being a reality, and quantum systems have many limitations. But, as we all know, progress is a never-ending process, and it is possible that in the not-too-distant future, this technology will rule the planet. Let's have a conversation about how this cutting-edge technology may impact our security.

Data encryption is the key to online security

Encryption is essential to the protection of data on computers and other Internets. Encrypting data entails utilizing a secret rule and a collection of characters, known as ‘the key’, to turn it into a meaningless jumble. To comprehend what the sender was trying to communicate, one will have to decode the ‘porridge’ using the key.

One of the most basic types of encryption is when each letter is replaced by a number (say, A - 1, B - 2, and so on). The word ‘breadfruit’ will appear like ‘2 1 15 2 1 2’ in this example, and the key will be the alphabet, where each letter corresponds to a number. Of course, more sophisticated rules are utilized, but the idea of the operation is roughly the same.

When there is only one key for all interlocutors, as in our case, such ciphers are referred to as symmetric. Before you may use a symmetric cipher, all interlocutors must acquire this key in order to encrypt and decode their own communications. Furthermore, it must be transmitted in an unencrypted format (after all, there is nothing to encrypt with yet). If you have to send the key over the Internet, attackers can intercept it and successfully spy on everything you've secured with it. This is not very practical.

As a result, there are encryption methods that employ two keys: private for decryption and public for message encryption (these keys are also called private and public). Both are the recipient's creations. He does not give the secret key to anyone, therefore he will not be intercepted.

The second, the public key, is intended to allow anybody to encrypt data with it, but it can only be decrypted with the accompanying private key. As a consequence, it is not frightening to send information in an unencrypted form — it poses no harm. This method of encryption is known as asymmetric.

Both the ‘lock’ and the ‘key’ (that is, public and private keys) in current encryption systems are typically huge integers, and the algorithms themselves are constructed on sophisticated mathematical processes using these numbers. Furthermore, operations must be designed in such a way that ‘turning them back’ is exceedingly difficult. As a result, having the public key will not assist someone attempting to break the cipher.

Quantum cipher cracking

What this means is that anything that is encrypted with a public key can only be decoded by its private ‘partner’, and no one else. This indicates that the private key is being investigated by potential adversaries. Because it is not sent to any location, as we have stated previously, it is not feasible to intercept it. However, in principle, one may get it from the general populace.

However, cryptographic methods are purposely intended to make it difficult to solve the challenge of acquiring a private key from a public key in a reasonable length of time. This is done by preventing the reverse engineering of public keys into private ones.

Quantum computers become useful at this point in the discussion. The simple truth is that, as a result of their design, they are capable of solving such problems significantly faster than conventional computers.

When a quantum computer is utilized, the unreasonably long amount of time needed to decipher a cipher can be reduced to a more manageable amount of time. And because of this, the very idea of utilizing a cipher that is susceptible to being broken by a quantum computer may be rendered moot in some theoretical sense.

The advent of quantum computers is imminent, and when they do arise, the world will be forever altered. Their introduction might completely change the way physics and medicine are practiced, not to mention the way that information is protected. So, how should we get ready for this?

Protection against quantum hacking

If the thought of your data being decoded and stolen by wealthy criminals using a quantum computer makes you cringe, don't worry: security experts are already planning for protection. Currently, there are some fundamental procedures in place that should protect user information from attackers.

Traditional encryption algorithms that are resistant to quantum attacks

It's difficult to believe, but we're already employing encryption methods that quantum computers can’t hack For example, despite quantum computers' increased speed, cracking the popular AES encryption used in instant messengers such as WhatsApp and Signal remains impossible. They do not pose a serious danger to many other symmetric (one-key) ciphers. we're back to the issue of distributing the key to all participants in the discourse.

Algorithms that are created expressly to thwart quantum assaults

Although no one is currently breaking asymmetric ciphers, mathematicians are actively developing new ones that are resistant to even the most powerful of quantum devices. So, by the time the bad guys get a hold of quantum computers, data defenders will almost certainly be able to strike back.

Encryption in several ways at once

Encrypting data numerous times with various methods is a useful and accessible approach. Even if attackers hack one one type of encryption, it is not guaranteed that they will be able to manage the rest.

Using quantum technologies against themselves

Quantum key transfer systems are employed for the secure usage of symmetric ciphers, which, as previously stated, are less resistant to cracking with the use of quantum computers. They do not ensure security from hackers, but they do allow you to be certain that the information was intercepted. If the encryption key is stolen along the route, you can refuse to accept it and send another one. True, this requires specialized technology, but it is very self-contained and operates in both government-backed and commercial businesses.

The entire internet will not be hacked

So, while quantum computers appear to be capable of breaking ciphers that regular computers cannot, they are not omnipotent. Furthermore, security measures are being created proactively to prevent attackers from gaining an advantage in the arms race.

So, the world's encryption is unlikely to fail all at once; rather, certain algorithms will ultimately be replaced by others, which is not always a negative thing. This is happening right now, because after all, technology is not a static industry.

As a result, it's occasionally worth investigating whatever encryption technique a certain service employs and whether the algorithm is regarded antiquated (susceptible to hacking). Indeed, supposing that the era of quantum computers has already arrived, it would be prudent to begin encrypting extremely important data meant for long-term preservation.